Navigation
Open Access
Article
Circadian clocks in crustaceans: identified neuronal and cellular systems
Johannes Strauss1,Heinrich Dircksen1
1
Department of Zoology, Stockholm University, Svante Arrhenius vag 18A, S-10691 Stockholm, Sweden
DOI: 10.2741/3661 Volume 15 Issue 3, pp.1040-1074
Published: 01 June 2010
(This article belongs to the Special Issue Biological rhythms in crustaceans)
Abstract

Circadian rhythms are known for locomotory and reproductive behaviours, and the functioning of sensory organs, nervous structures, metabolism and developmental processes. The mechanisms and cellular bases of control are mainly inferred from circadian phenomenologies, ablation experiments and pharmacological approaches. Cellular systems for regulation summarised here comprise the retina, the eyestalk neuroendocrine X-organ-sinus gland system, several neuropeptides such as red pigment concentrating, hyperglycaemic and pigment-dispersing hormones, and factors such as serotonin and melatonin. No master clock has been identified, but a model of distributed clockwork involves oscillators such as the retinular cells, neurosecretory systems in the optic lobes, putative brain pacemakers, and the caudal photoreceptor. Extraretinal brain photoreceptors mediate entrainment. Comparative analyses of clock neurons and proteins known from insects may allow the identification of candidate clock neurons in crustaceans as putative homologues in the two taxa. Evidence for the existence of "insect-like" intracellular clock proteins and (light sensitive) transcription factors is scarce, but clock-, period-, and cryptochrome-gene products have been localised in the CNS and other organs rendering further investigations into crustacean clockwork very promising.

Share and Cite
Johannes Strauss, Heinrich Dircksen. Circadian clocks in crustaceans: identified neuronal and cellular systems. Frontiers in Bioscience-Landmark. 2010. 15(3); 1040-1074.