Open Access
Article
Maltodextrin transport through lamb
Alain Charbit1
1
Laboratoire de Microbiologie, INSERM U-570, Faculté de Médecine Necker, 156, rue de Vaugirard, 75730 Paris Cedex 15, France. charbit@necker.fr
DOI: 10.2741/1046 Volume 8 Issue 6, pp.265-274
Published: 01 May 2003
(This article belongs to the Special Issue Bacterial membrane transport)
Abstract

The trimeric protein LamB of E. coli K12 (maltoporin) specifically facilitates the diffusion of maltose and maltooligosaccharides through the outer membrane and acts as a non-specific porin for small hydrophilic molecules. LamB serves also as a specific cell surface receptor for phages, including phage lambda. Each monomer consists of an eighteen-stranded antiparallel beta-barrel with nine surface loops (L1 to L9). Three loops fold into the beta-barrel, with loop L3 constricting the channel about half way. Monomers bind sugars independently of each other. Structural studies of maltoporin in complex with maltodextrin showed that the binding site, located at the channel constriction, was composed of : i) a "greasy slide", a left-handed helical arrangement of aromatic residues extending along the channel providing a hydrophobic path to the glycosyl moieties; and ii) an "ionic track", found on both sides of the channel constriction zone, providing residues available for forming hydrogen bonds with the sugars. The participation of the surface loops that cover the entry of the pore to phage binding and to sugar binding and transport has also been thoroughly investigated. Genetic and biochemical analyses suggest that some of the surface loops participate directly in the orientation and entry of maltooligosaccharides into the channel and, thus, control access to the binding site.

Share and Cite
Alain Charbit. Maltodextrin transport through lamb. Frontiers in Bioscience-Landmark. 2003. 8(6); 265-274.