Open Access

Anti-tick vaccines in the omics era

Manuel Rodriguez Valle1,2,*,Felix D. Guerrero3
The University of Queensland, Queensland Alliance for Agriculture and Food, Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4067, Australia
Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010
USDA-ARS, Knipling Bushland US Livestock Insect Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
DOI: 10.2741/E812 Volume 10 Issue 1, pp.122-136
Published: 01 January 2018
(This article belongs to the Special Issue From tick genetics to genomics)
*Corresponding Author(s):  
Manuel Rodriguez Valle

Tick vaccines have been available for more than 20 years. They are useful and effective control agents when used properly. However, no new products have emerged since the Bm86-based Gavac vaccine was commercialized. Acaricide resistance is a problem with no abatement in sight and anti-tick vaccines are likely to be relied upon even more in the coming years. As human medicine and plant agriculture has embraced the various Omics technologies, the search for anti-tick vaccines would be well served to follow; so that new vaccine antigens and adjuvants might be developed to assist tick control programs. However, the simple outward appearance of ticks and their life cycle belies the complexity of their genomes which are computationally challenging to sequence and annotate. We review various Omics research efforts in light of research on anti-tick vaccines.

Key words

Ticks, Anti-Tick Vaccines, Genomics, Review

2. Introduction

Ticks belong to the phylum Arthropoda, subphylum Chelicerata, which is comprised of spiders, scorpions, mites and ticks, and the subclass Acari. The chelicerates include a diversified group of terrestrial and marine arthropods (1), and are the second largest group of arthropods after the insects. Ticks are important vectors of a significant number of pathogenic microorganisms, protozoa, rickettsiae, spirochaetes and viruses. Consequently, the tick and tick borne disease (TTBD) complex constitutes a global threat for livestock and human health (2). For example, Dermacentor andersoni affect human health because this tick is a vector for the disease known as Rocky Mountain Spotted Fever (RMSF) caused by the gram-negative coccobacillus, Rickettsia rickettsia an obligate intracellular pathogen (3). The beef and dairy cattle industries of the tropical and sub-tropical regions around the world are threaten by the cattle tick Rhipicephalus microplus which is vector of bovine tick fever (babesiosis and anaplasmosis) as well as other diseases such as equine piroplasmosis (Theileria equi) (2). Recent analysis estimated the global losses to the cattle industry caused by this TTBD complex are US$22–30b per annum (4).

The treatment of animals with chemical acaricides is the established method to control tick populations. This method has significant environmental drawbacks, including the potential for chemical residues in milk and meat and the selection of acaricide resistant ticks. Consequently, the focus of a number of scientific studies has been the development of different methods of tick control. Some of these include the use of naturally resistant cattle, biological control (biopesticides) and vaccines (5-9). The most important step forward in the area of vaccine development was the discovery in 1986 of the Bm86 glycoprotein localised on the surface of tick gut membrane cells. This protective antigen (10) induced a protective immune response in vaccinated hosts mediated by host antibodies that damage the tick gut subsequently affecting tick survival and egg viability (11-14). A second generation of vaccines based on Bm86 antigens has demonstrated effective control of R. microplus and R. annulatus infestations (Table 1) (6, 11, 12, 15-18). This antigen also induced partial protection against Boophilus decoloratus, R. appendiculatus, R. sanguineus s.l., Hyalomma anatolicum and H. dromedarii (19). Bm86-based vaccines are capable of reducing the number, weight, and reproductive capacity of engorging female ticks, to the extent that subsequent tick generations show significantly reduced larval infestation. The Bm86-based vaccine has been successfully used in integrated control programs developed for cattle tick populations that include a component of limited acaricide applications for short-term control of unacceptable tick burdens (7). However, Bm86 vaccines have not shown efficacy against all tick stages and also have demonstrated unsatisfactory efficacy against some geographical R. microplus strains limiting widespread adoption (20). Consequently, researchers continue looking for new antigens in order to improve the current commercial tick vaccine.

Table 1. Mosquitoes and Ticks genome sequencing projects
SpeciesGenomeESTsProtein Coding GenesDiseasesReference
Gbp% Sequenced
I. scapularis2.26257202,19020,486Lyme borreliosisGenBank:gi|255764735|ref|NZ_ABJB000000000.1
I. ricinus2.1~241,9746,415GenBank: JXMZ00000000.2;
A. americanum3.16,481400GenBank: GBBK00000000.1
A. cajennense2.80.165,7705,827GenBank: GBBK00000000.1
D. andersoni2.7421,797677(43)
R. microplus7.125.3553,2081.036
R. appendiculatus20.3 Mb21,41012,761(44)
R. sanguineus2,903
Ornithodoros spp.11.094,013
Anopheles gambiae0.27810013,683Malaria
Culex quinquefasciatus0.57910018,883
Aedes aegypti1.3810017,387Yellow Fever, Dengue, Chikungunya

3. Tick vaccine enters the genomic era

Until the late 1990s, vaccine development was based on the ‘‘isolation–inactivation–inoculation” principle. The “first generation” of vaccines consisted of live, attenuated or killed pathogens, while the “second generation” relied upon purified components of the targeted pathogen. Pasteur’s approach to vaccine development has been successfully applied to induce protection against several pathogenic bacteria and viruses. However, this approach is long and laborious even in successful projects (19). Additionally, vaccine research is often unsuccessful against pathogens not possessing a clear immuno-dominant vaccine candidate antigen, are unculturable, contain hyper-variable-antigens, or have complex life cycles (21). Hence, the recent advances in genomics and “omics” technologies in general have provided a “third generation” approach which might overcome these challenges. This new methodology is termed reverse vaccinology, and is rooted in functional genomics, bioinformatics, and systems biology.

During the second half of the 70s, Frederick Sanger developed a chain-termination-based DNA sequencing technique which led to the full sequencing of the genome for the virus ?X174 (22). However, at that time using available technology, the genome sequencing of more complex organisms as human, mouse, plant or bacteria was a very difficult and time consuming task. In 1990 the Celera Genomic Company launched the human genome initiative with an estimated cost of $3 billon. This company suggested the “shotgun sequencing” method which was used to successfully sequence the genome of the Drosophila melanogaster (fruit fly) (23). Also in 1990, Pal Nyre?n developed pyrosequencing, a method based on sequencing-by-synthesis. Basically this protocol synthesizes the complementary DNA strand by incorporation of each nucleotide sequenced into the DNA strand (A, T, C or G) using a series of enzymatic reactions that result in a light signal read by an analyser (24). Later the 454 Life Sciences group further optimized this method utilizing the Polymerase Chain Reaction (PCR). The Genome Sequencer FLX from 454 Life Sciences was able to sequence 12.5. million bases per hour in a single instrument run, a capability that allowed sequencing of the human genome in ~ 10 days. In 1997, Shankar Balasubramanian and David Klenerman suggested (25) the use of clonal arrays and massively parallel sequencing of short reads using solid phase sequencing by reversible terminators. Basically, a fluorescently labelled reversible terminator is imaged as each dNTP is added, and then cleaved to allow incorporation of the next base. Since all 4 reversible terminator-bound dNTPs are present during each sequencing cycle, natural competition minimizes incorporation bias. The method minimises errors and missed calls that are often associated with strings of repeated nucleotides (homopolymers). This chemistry is the basis of the current Illumina SBS technology-based instruments that able to generate over 1 terabase (Tb) of data per instrument run.

The full sequencing of the Haemophilus influenza (26) genome in 1995 marked an important push into the genomic era with transcendental impact on the existing paradigm of vaccine development. To date, the genomes of 127 mammals, 76 fishes, 226 insects, 210 plants, 867 fungi, 210 protists, 8811 bacteria, 580 archaea, 5581 viruses and two ticks (I. scapularis, and I. ricinus) have been reported ( (27-29) with many other genome-sequencing projects underway. The emergent genomic, proteomic, transcriptomic and comparative genomic datasets provide the foundation for studies identifying genes that encode putative protective antigens as novel targets for interventions. For example, reverse vaccinology, pioneered by Rappuoli and colleagues (21, 30), was used for the development of vaccines where the standard approaches failed. This method involves the in silico screening of the entire genome of a pathogen to identify genes with important immunogenic characteristics, followed by wet lab verification of immunogenicity and protection. Recently, groups in South Africa, the United States, and Australia have applied the reverse vaccinology method for the identification of important cattle tick vaccine candidates. The antigens selected by this methodology were tested in cattle with various levels of efficacy against cattle tick infestations (4, 31-33).

4. Omics approaches in tick vaccine development

Tick genomes are among the largest genomes with sizes ranging from 1.0.4.-7.1. x109 bp (34, 35), and karyotype analyses have shown a sex determining system determined by XY or XO arrangement with different numbers of chromosomes. Genomics studies have been conducted in different ticks species, life stages, and tissues to enhance knowledge and understanding tick-host interaction, and as an important scientific tool assisting novel tick vaccine antigen identification. The sialotranscriptome of A. variegatum (36), A. americanum (37-39), D. variabilis (39), I. scapularis (40, 41), I. ricinus (42), D. andersoni Alarcon-Chaidez; (43) and R. appendiculatus (44) have been determined. R. microplus transcriptomes of larvae (45-49), engorged female gut (50), ovary (51), and synganglia (52) have been reported recently. The full-length coding sequences of numerous proteins and unique protein tick protein families have been described based in these analyses and their roles during host-parasite interaction described.

Proteins secreted in tick saliva are designed to counteract the innate and acquired host immune responses and facilitate the blood feeding process during the tick life cycle. Proteins such as, serpins, lipocalins, and proteases have been reported in all the tick transcriptomes that have been sequenced (53-57). These studies were mainly conducted utilizing pools of ticks or tissues collected at a specific stage of the tick life cycle. The methodologies used included Transcriptome analysis by Massively Parallel Signature Sequencing (MPSS), subtracted and cDNA libraries, and DNA microarray (Figure 1.). For example, the role of the serpins family in ticks is to reduce the activity of specific proteases involved in important physiological pathways such as the complement cascade, blood coagulation, fibrinolysis, and extracellular matrix remodelling (58). Lipocalins comprise a multi-protein family with a low molecular weight and diverse functions (57, 59, 60). These proteins play an important role in modulation of the immune response, regulation of cell homeostasis and clearance of endogenous and exogenous compounds (61-67). Other functions associated with lipocalins include retinol and pheromone transport, olfaction, invertebrate colouration and prostaglandin synthesis (60). Sialome studies showed that saliva protein families are diverse and characterized by a high somatic variety based on gene polymorphism. Larger scale proteomic approaches have been used to identify proteins in R. microplus ovaries (68) and gut (69) of engorged females in response to infection with Babesia bovis. Out of these proteomic studies, several anti-tick vaccine antigens were identified and tested in vitro and in vivo (33, 70). As the relationship between transcript and protein abundance is not direct and cannot reliably be predicted, proteomic and transcriptomic provide complementary information and are not redundant.

The resources from the I. scapularis (57%) and R. microplus (~27%) genome sequencing projects will enable further gene discovery that can focus upon the tick – host interaction which might prove important for tick vaccine development (28, 71-73) (Table 1). Recently, de la Fuente and colleagues highlighted the scientific and practical implications of the recently released I. scapularis genome sequence (28). This resource provides a key reference for comparative genomics, tick-host and tick pathogen interaction, and facilitated knowledge about gene organization within this tick's genome (71). All tick genomes sequenced to date are characterized by a high content of tandem repeats and transposable elements. For example, the I. scapularis genome has ~ 70% of these genomic elements. Gulia-Nuss and co-workers suggested the possibility of horizontal transposable element transmission due to the high presence of the Non-LTR retrotransposons of the CR1, I and L2 clades which are common to mammals, bird and lizard (28). Additionally, the I. scapularis genome resource facilitated the sequencing of the I. ricinus genome (29). The R. microplus genome has been sequenced (F. Guerrero, unpublished) by a hybrid short read Illumina and long read Pac Bio approach (74, 75). The assembly of this large genome was computationally intensive and the results are currently being processed for submission to the scientific community through the peer-review process, DNA sequence databases, and CattleTickBase (72). As with I. scapularis, the R. microplus genome is complex and replete with repetitive elements (76). Genome sequencing projects have been initiated for R. annulatus, A. variegatum, and Ornithodoros turicata (F. Guerrero personal communication). Further sequencing efforts should be taken to complete the genomes of other tick species as an important step forward to develop novel control methods against these important vectors.

Figure 1. Functional genomics and tick vaccine development.

5. Functional genomics at the tick-vector interface

Functional genomics refers to the use of the information in an organism's genome to study protein expression and function on a global scale (genome-wide or system-wide), using high-throughput or large-scale experimental methodologies together with bioinformatic, statistical and computational analysis of the results. Functional genomics permits the quantitative and qualitative study of the expression of one to thousands of genes under specific developmental stages of cell, tissues or an organism of interest (77). RNA interference (RNAi) is the most common technique used to study tick gene function, and it has been used in Amblyomma, Ixodes, Haemaphysalis, Dermacentor, and Rhipicephalus species (78, 79). A typical RNAi experiment involves in vivo injection or in vitro tick feeding with a solution containing a gene-specific dsRNA followed by determination of the efficiency of gene silencing and its effect on tick survival, engorgement and oviposition (Figure 1.). Another method to study functional genomics involves in vitro tick feeding using blood or serum containing antibodies against specific molecular targets (80-83).

These experiments have provided valuable information about the function of genes involved in regulating tick feeding and reproduction (79). The RNAi pathway was identified in R. microplus by using sequence similarities to orthologous proteins present in D. melanogaster, and the effects of their silencing by RNAi using tick cell cultures and adult female ticks (84). Recently, it was shown by RNAi that Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) enzyme plays an important role in egg production, reproduction and development of the tick (85). RNAi experiments conducted with the vitellogenin receptor of the ixodid tick, Haemaphysalis longicornis Neumann showed this gene is essential for vitellogenin uptake and egg development, and transovarial transmission of Babesia parasites in this tick (86). Also, the effect of Protein Kinase B (AKT) / Glycogen Synthase Kinase (GSK) during tick embryogenesis was determined by introduction of dsRNA by electroporation of tick eggs (87). A significant reduction in tick feeding was observed after silencing the A. americanum (Aam) CD147 receptor by RNAi (88). Finally, four proteins, threonyl-tRNA synthetase (2C9), 60S ribosomal proteins L13a (2D10) and L13e (2B7), and interphase cytoplasm foci protein 45 (2G7), were identified using RNAi as potential anti-tick vaccine antigens against A. americanum, although only 2D10 and 2G7 affected both nymph and adult stages (89). Recently, nonspecific down- and up-expression of seemingly unrelated genes was reported while performing RNAi studies with Ubiquitin-63E dsRNA (sized 594 bp) and this was found to result from off-target effects of the dsRNA. This report showed the necessity of optimization and dsRNA selection during the experimental design phases (84). The availability of the I. scapularis and R. microplus genome sequence will facilitate RNAi functional genome studies, thus improving our knowledge of tick physiology, development and gene regulation.

Functional genomics has been applied to study the tick and tick borne disease (TTBD) complex and for tick vaccine development. Tick-borne pathogens interact with their respective tick vectors through complex molecular mechanisms. Hence, different studies have been conducted to determine these mechanisms using functional genomics in ticks and tick cell lines. For example molecular studies have been conducted to study the tick-Anaplasma spp. interface. Diverse cellular pathways are perturbed during Anaplasma marginale and A. phagocytophilum infection of ticks. RNAi was used to study the effect of Anaplasma infection on the expression of the Subolesin gene (90). Similarly, MSP1, MSP2, MSP5 and other unknown surface proteins present in Anaplasma have been studied during their complex interaction with ticks (90, 91). The temporal transcriptional response of A. marginale-infected R. microplus showed tissue-specific differences in the number of transcripts expressed between the midgut and salivary gland. The relative low effect observed in the number of high or down regulated genes confirmed that A. marginales is well adapted to his vector (92). Similar studies conducted in B. bovis-infected R. microplus showing the tick's transcriptome response to infection by the apicomplexan parasite (45, 50, 51). Bastos in 2009, and Hussein 2015 (33, 70) utilized gene silencing in R. microplus to study gene expression induced upon infection or in association with B. bovis infection.

6. Perspective

In 1912, Robert Nabours reported that F2 generation from crosses of Bos indicus and Bos taurus were resistant to tick infestations. These animals showed an inherited genetic trait for tick resistance that could be genetically segregated (93). In 1939, William Trager (94) reported that acquired immunity is responsible for tick resistance. This efforts to develop immunologically-based controls method was followed by many publications related with the host-parasite interactions and control methods (95). Two major types of antigens have emerged regarding the development of tick vaccines: 1) Secreted saliva proteins and 2) Concealed antigens (73, 96, 97). Secreted antigens have the advantage that they are re-exposed to the immune system throughout the tick's feeding process, inducing an important immunological memory. However, they are often members of protein families composed of numerous proteins with very low similarity and redundant functions (57, 98), consequently they can induce only partial protection or may fail as other family members act to effectively restore the function of the targeted molecule. Bm86 is a glycoprotein localised on the surface of the R. microplus gut cells and represents all the concealed antigens reported as an effective vaccine antigen in pen and field trials (5, 6, 19). The principal limitation of the concealed antigen is that they cannot boost by natural routes the host immune response; hence, booster shots are necessary to stimulate the host memory cells. There can also be sequence variants of the antigen that differ among tick populations from different geographic regions. In addition, there can be physiological issues (99) responsible for the variable efficacy of the vaccines based on Bm86 antigen. Other concealed antigens that have been evaluated for efficacy against the cattle tick are the ribosomal protein P0, showing 96 % efficacy in pen trial (100), Subolesin, showing efficacy from 0-86 % (4), and 68 and 75 % with aquaporin (33, 101). The antibody-antigen recognition process is poorly understood in the tick gut, hemolymph, and the intracellular space where tick digestion occurs.

Correlation between antibodies titre and protection from tick infestation was observed in animals vaccinated with Bm86. Therefore herds of cattle with similar mean antibody response following vaccination will also have the same average vaccine-induced protection against ticks (11, 16). However, tick infestation level, bovine breed, and physiological stage such as pregnancy, are factors affect the antibody-protection correlation. The antibody titers necessary to induce protection can be enhanced by optimized vaccine, adjuvant, dose, and treatment schedule in order to induce a more effective quantitative and qualitative antibody response. These specific responses can vary from the naturally occurring geographic antigen sequence variant. Additionally, the recombinant antigens utilised in tick vaccines lack 3D structural information that could be used to predict conformational epitopes in addition to sequential B epitopes that are currently predicted by bioinformatic algorithms. The challenges to obtain an effective vaccine against ticks remain immense and the unveiling of the I. scapularis and R. microplus genomes are essential steps forward to achieve this goal. To this point, the advent of the “Omic” era has only produced a small number of anti-tick vaccine antigens, most with only partial efficacy (Table 2). Genomics, functional genomics, and structural biology studies must be merged with the common goal of developing novel tick control technologies. The organs on the different life stages of the tick, particularly salivary gland and gut, should be comprehensively screened for novel antigens. Also, it will be very useful to conduct “Omics” studies at the individual cell level or specific tick organs, rather than maintaining focus upon pooled samples of whole ticks. Further innovation in ideas and funding strategies will be necessary to turn discoveries into novel vaccines for tick control (73).

Table 2. Tick antigens developed and approaches tested for vaccine development
Tick antigensTick speciesProtein identityApproach% Efficacy or reductionReference
BM86 and orthologs R. microplusMidgut membrane-bound prot.PRC1, 2nd generation0-100(19, 102-104)
R. annulatus
R. decoloratus
H. dromedarii
RAS-3, RAS-4, RIM36R. appendiculatusSerpinsPRC, 2 nd generation(105)
RaFER2/RmFER2R. microplusFerritin, iron transporterPRC, 2 nd generation64 & 72(106)
R. annulatus
I. ricinus
64TRPI. ricinusPutative tick cement proteinPRC, 2 nd generation62 & 47 (Mortality)(107, 108)
R. appendiculatus
R. sanguineus
GP80/VIT87R. microplusVitellin/vitellogeninPurified components68 (14)
BlmLTI/BmTI/BmTI-AR. microplusTrypsin inhibitorsPRC, 2 nd generation18, 32 & 72(109)
GLPH. dromedariiGlycoproteinsPurified components63 (reduction in egg hatch)(110)
Ef1aR. microplusElongation factorPRC, 2 nd generation31(111, 112)
SubolesinR. annulatusRegulator factorImmunisation screening by injecting naked cDNA library0-83113, 114)
R. microplus
I. scapularis
pP0R. sanguineusAcidic ribosomal protein P0Synthetic peptide, 2 nd generation96(100)
R. microplus
UBER. microplusUbiquitinPRC, 2 nd generation13 & 55(112)
R. annulatus
GST-HIR. microplusGlutathione-S transferasePRC, 2 nd generation57(115)
4F8R. microplus5’-NucleotidasePRC, 2 nd generation0(116)
BM91R. microplusAngiotensin converting enzymePRC, 2 nd generation6 (reproduction)(117)
BMA7R. microplusMucinPurified components 2 nd generation21 (reduction of egg weights)(118)
AquaporinR. microplusAquaporinReverse Vaccinology, 3th generation68 & 75(101)
179 different AntigensR. microplusN/AReverse Vaccinology, 3th generationN/A(31)
24 different AntigensR. microplusN/AReverse Vaccinology, 3th generation87(32)

    1. A. Jeyaprakash and M. A. Hoy: First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol, 47(1), 1-18 (2009)

    2. F. Jongejan and G. Uilenberg: The global importance of ticks. Parasitology, 129, S3-S14 (2004)

    3. C. A. Gall, K. E. Reif, G. A. Scoles, K. L. Mason, M. Mousel, S. M. Noh and K. A. Brayton: The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J, 10(8), 1846-55 (2016)

    4. A. E. Lew-Tabor and M. Rodriguez Valle: A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis, 7(4), 573-85 (2016)

    5. J. de la Fuente, C. Almazan, M. Canales, J. M. Perez de la Lastra, K. M. Kocan and P. Willadsen: A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev, 8(1), 23-28 (2007)

    6. J. de la Fuente, M. Rodriguez, C. Montero, M. Redondo, J. C. Garcia-Garcia, L. Mendez, E. Serrano, M. Valdes, A. Enriquez, M. Canales, E. Ramos, O. Boue, H. Machado and R. Lleonart: Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac (TM). Genet Anal Biomol Eng, 15(35), 143-148 (1999)

    7. M. Rodriguez Valle, L. Mendez, M. Valdez, M. Redondo, C. M. Espinosa, M. Vargas, R. L. Cruz, H. P. Barrios, G. Seoane, E. S. Ramirez, O. Boue, J. L. Vigil, H. Machado, C. B. Nordelo and M. J. Pineiro: Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac (TM). Exp Appl Acarol, 34(3-4), 375-382 (2004)

    8. P. Willadsen: Immunological control of ectoparasites: past achievements and future research priorities. Genet Anal: Biomol Eng, 15 131-137 (1999)

    9. P. Willadsen and F. Jongejan: Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today, 15(7), 258-62 (1999)

    10. P. Willadsen, G. A. Riding, R. V. McKenna, D. H. Kemp, R. L. Tellam, J. N. Nielsen, J. Lahstein, G. S. Cobon and J. M. and Gough: Immunological control of a parasitic arthropod: identification of a protective antigen from Boophilus microplus. J Immunol, 143, 1346-1351 (1989)

    11. M. Rodriguez Valle, M. L. Penichet, A. E. Mouris, V. Labarta, L. L. Luaces, R. Rubiera, C. Cordoves, P. A. Sanchez, E. Ramos, A. Soto, M. Canales, D. Pelenzuela, A. Triguero, R. Lleonart, L. Herrera and J. de la Fuente: Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation. Vet Parasitol, 57(4), 339-349 (1995)

    12. M. Rodriguez Valle, C. L. Massard, A. H. da Fonseca, N. F. Ramos, H. Machado, V. Labarta and J. de la Fuente: Effect of vaccination with a recombinant Bm86 antigen preparation on natural infestations of Boophilus microplus in grazing dairy and beef pure and cross-bred cattle in Brazil. Vaccine, 13(18), 1804-1808 (1995)

    13. R. L. Tellam, D. Smith, D. H. Kemp and P. Willadsen: Vaccination against ticks. In: Animal Parasite Control Utilizing Biotechnology. Ed W. K. Yong. CRC Press, Boca Raton (1992)

    14. R. L. Tellam, D. Kemp, G. Riding, S. Briscoe, D. Smith, P. Sharp, D. Irving and P. Willadsen: Reduced oviposition of Boophilus microplus feeding on sheep vaccinated with vitellin. Vet Parasitol, 103(1-2), 141-56 (2002)

    15. H. Fragoso, P. H. Rad, M. Ortiz, M. Rodriguez Valle, M. Redondo, L. Herrera and J. de la Fuente: Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. Vaccine, 16(20), 1990-1992 (1998)

    16. J. de la Fuente, M. Rodriguez, M. Redondo, C. Montero, J. C. Garcia-Garcia, L. Mendez, E. Serrano, M. Valdes, A. Enriquez, M. Canales, E. Ramos, O. Boue, H. Machado, R. Lleonart, C. A. de Armas, S. Rey, J. L. Rodriguez, M. Artiles and L. Garcia: Field studies and cost-effectiveness analysis of vaccination with Gavac (TM) against the cattle tick Boophilus microplus. Vaccine, 16(4), 366-373 (1998)

    17. M. Redondo, H. Fragoso, M. Ortiz, C. Montero, J. Lona, J. A. Medellin, R. Fria, V. Hernandez, R. Franco, H. Machado, M. Rodriguez and J. de la Fuente: Integrated control of acaricide-resistant Boophilus microplus populations on grazing cattle in Mexico using vaccination with Gavac (TM) and amidine treatments. Exp Appl Acarol, 23(10), 841-849 (1999)

    18. R. Miller, A. Estrada-Pena, C. Almazan, A. Allen, L. Jory, K. Yeater, M. Messenger, D. Ellis and A. A. Perez de Leon: Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus. Vaccine, 30(38), 5682-7 (2012)

    19. M. Rodriguez-Valle, A. Taoufik, M. Valdes, C. Montero, H. Ibrahin, S. M. Hassan, F. Jongejan and J. de la Fuentegh: Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. Vaccine, 30(23), 3453-3458 (2012)

    20. J. C. Garcia-Garcia, I. L. Gonzalez, D. M. Gonzalez, M. Valdes, L. Mendez, J. Lamberti, B. D'Agostino, D. Citroni, H. Fragoso, M. Ortiz, M. Rodriguez and J. De La Fuente: Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Exp Appl Acarol, 23(11), 883-895 (1999)

    21. D. Serruto and R. Rappuoli: Post-genomic vaccine development. FEBS Lett, 580(12), 2985-92 (2006)

    22. F. Sanger, G. M. Air, B. G. Barrell, N. L. Brown, A. R. Coulson, C. A. Fiddes, C. A. Hutchison, P. M. Slocombe and M. Smith: Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 265(5596), 687-95 (1977)

    23. E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan, S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, E. L. Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams and J. C. Venter: A whole-genome assembly of Drosophila. Science, 287(5461), 2196-204 (2000)

    24. P. Nyren: The History of Pyrosequencing (R). Methods Mol Biol, 1315, 3-15 (2015)

    25. S. Balasubramanian, D. Klenerman and D. Bentley: Arrayed biomolecules and their use in sequencing. In, US Patent 6,787,308, 2004. 244, (2004)

    26. R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton, W. FitzHugh, C. Fields, J. D. Gocyne, J. Scott, R. Shirley, L. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496-512 (1995)

    27. J. Kules, A. Horvatic, N. Guillemin, A. Galan, V. Mrljak and M. Bhide: New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. Mol Biosyst, 12(9), 2680-94 (2016)

    28. M. Gulia-Nuss, A.B. Nuss, J.M. Meyer, D.E. Sonenshine, R.M. Roe, R. M. Waterhouse, D. B. Sattelle, J. de la Fuente, J. M. Ribeiro, K. Megy, J. Thimmapuram, J.n R. Miller, B. P. Walenz, S. Koren, J. B. Hostetler, M. Thiagarajan, V. S. Joardar, L. I. Hannick, S. Bidwell, M. P. Hammond, S. Young, Q. Zeng, J. L. Abrudan, F. C. Almeida, N. Ayllón, K. Bhide, B. W. Bissinger, E. Bonzon-Kulichenko, S. D. Buckingham, D. R. Caffrey, M. J. Caimano, V. Croset, T. Driscoll, D. Gilbert, J. J. Gillespie, G. I. Giraldo-Calderón, J. M. Grabowski, D. Jiang, S. M. S. Khalil, D. Kim, K. M. Kocan, J. Koči, R. J. Kuhn, T. J. Kurtti, K. Lees, E. G. Lang, R. C. Kennedy, H. Kwon, R. Perera, Y. Qi, J. D. Radolf, J. M. Sakamoto, A. Sánchez-Gracia, M. S. Severo, N. Silverman, L. Šimo, M. Tojo, C. Tornador, J. P. Van Zee, J. Vázquez, F. G. Vieira, M. Villar, A. R. Wespiser, Y. Yang, J. Zhu, P. Arensburger, P. V. Pietrantonio, S. C. Barker, R. Shao, E. M. Zdobnov, F. Hauser, C. J. P. Grimmelikhuijzen, Y. Park, J. Rozas, R. Benton, J. H. F. Pedra, D. R. Nelson, M. F. Unger, J. M. C. Tubio, Z. Tu, H. M. Robertson, M. Shumway, G. Sutton, J. R. Wortman, D. Lawson, S. K. Wikel, V. M. Nene, C. M. Fraser, F. H. Collins, B. Birren, K. E. Nelson, E. Caler and C. A. Hill: Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Comm, 7, 10507 (2016)

    29. W. J. Cramaro, D. Revets, O. E. Hunewald, R. Sinner, A. L. Reye and C. P. Muller: Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naive midgut. BMC Genomics, 16(1), 871 (2015)

    30. R. Rappuoli: Reverse vaccinology. Curr Opin Microbiol, 3(5), 445-50 (2000)

    31. C. Maritz-Olivier, W. van Zyl and C. Stutzer: A systematic, functional genomics, and reverse vaccinology approach to the identification of vaccine candidates in the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis, 3(3), 179-87 (2012)

    32. G. Lew-Tabor. A.E., F. D., Bellgard, M.I., Rodriguez Valle, M. : An approach for genome based tick vaccine development. In: 8th International Tick and Tick-borne Pathogen Conference. Cape Town, South Africa (2014)

    33. H. E. Hussein, G. A. Scoles, M. W. Ueti, C. E. Suarez, F. K. Adham, F. D. Guerrero and R. G. Bastos: Targeted silencing of the Aquaporin 2 gene of Rhipicephalus (Boophilus) microplus reduces tick fitness. Parasit Vectors, 8, 618 (2015)

    34. A. J. Ullmann, C. M. Lima, F. D. Guerrero, J. Piesman and W. C. t. Black: Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplus. Insect Mol Biol, 14(2), 217-22 (2005)

    35. N. S. Geraci, J. Spencer Johnston, J. Paul Robinson, S. K. Wikel and C. A. Hill: Variation in genome size of Argasid and Ixodid ticks. Insect Biochem Mol Biol, 37(5), 399-408 (2007)

    36. J. M. Ribeiro, J. M. Anderson, N. C. Manoukis, Z. Meng and I. M. Francischetti: A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics, 12, 136 (2011)

    37. M. N. Aljamali, V. G. Ramakrishnan., H. Weng., J. S. Tucker., J. R. Sauer. and R. C. Essenberg.: Microarray analysis of gene expression changes in feeding female and male lone star ticks, Amblyomma americanum (L). Arch Insect Biochem Physiol, 71(4), 236-253 (2009)

    38. M. N. Aljamali, L. Hern, D. Kupfer, S. Downard, S. So, B. A. Roe, J. R. Sauer and R. C. Essenberg: Transcriptome analysis of the salivary glands of the female tick Amblyomma americanum (Acari: Ixodidae). Insect Mol Biol, 18(2), 129-154 (2009)

    39. A. D. Bior, Essenberg, R.C., Sauer, J.R.: Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni. Insect Biochem. Mol. Biol. , 32, 645-655 (2002)

    40. J. G. Valenzuela, I. M. B. Francischetti, V. M. Pham, M. K. Garfield, T. N. Mather and J. M. C. and Ribeiro: Exploring the sialome of the tick Ixodes scapularis. J Exp Biol, 205, 2843-2864 (2002)

    41. P. G. Guilfoile and M. Packila: Identification of four genes expressed by feeding female Ixodes scapularis, including three with sequence similarity to previously recognized genes. Exp Appl Acarol, 32, 103-110 (2004)

    42. A. Schwarz, B. M. von Reumont, J. Erhart, A. C. Chagas, J. M. Ribeiro and M. Kotsyfakis: De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J, 27(12), 4745-56 (2013)

    43. L. Mudenda, S. A. Pierle, J. E. Turse, G. A. Scoles, S. O. Purvine, C. D. Nicora, T. R. Clauss, M. W. Ueti, W. C. Brown and K. A. Brayton: Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol, 44(13), 1029-37 (2014)

    44. M. H. de Castro, D. de Klerk, R. Pienaar, A. A. Latif, D. J. Rees and B. J. Mans: De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis, 7(4), 536-48 (2016)

    45. A. M. Heekin, F. D. Guerrero, K. G. Bendele, L. Saldivar, G. A. Scoles, C. Gondro, V. Nene, A. Djikeng and K. A. Brayton: Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasit Vectors, 5, 162 (2012)

    46. F. D. Guerrero, R. J. Miller, M. E. Rousseau, S. Sunkara, J. Quackenbush, Y. Lee and V. Nene: BmiGI: a database of cDNAs expressed in Boophilus microplus, the tropical/southern cattle tick. Insect Bioch Mol Biol, 35(6), 585-95 (2005)

    47. F. D. Guerrero, K. G. Bendele, A. C. Chen, A. Y. Li, R. J. Miller, E. Pleasance, R. Varhol, M. E. Rousseau and V. M. Nene: Serial analysis of gene expression in the southern cattle tick following acaricide treatment of larvae from organophosphate resistant and susceptible strains. Insect Mol Biol,, 16(1), 49-60 (2007)

    48. M. Wang, F. D. Guerrero, G. Pertea and V. M. Nene: Global comparative analysis of ESTs from the southern cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics, 8, 368 (2007)

    49. L. Saldivar, F. D. Guerrero, R. J. Miller, K. G. Bendele, C. Gondro and K. A. Brayton: Microarray analysis of acaricide-inducible gene expression in the southern cattle tick, Rhipicephalus (Boophilus) microplus. Insect Mol Biol, 17(6), 597-606 (2008)

    50. A. M. Heekin, F. D. Guerrero, K. G. Bendele, L. Saldivar, G. A. Scoles, S. E. Dowd, C. Gondro, V. Nene, A. Djikeng and K. A. Brayton: Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host. Parasitol Res, 112(9), 3075-90 (2013)

    51. A. M. Heekin, F. D. Guerrero, K. G. Bendele, L. Saldivar, G. A. Scoles, S. E. Dowd, C. Gondro, V. Nene, A. Djikeng and K. A. Brayton: The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis. Parasit Vectors, 6, 276 (2013)

    52. F. D. Guerrero, Kellogg, A., Ogrey, A.N., Heekin, A.M., Barrero, R., Bellgard, M.I., Dowd, S.E., Leung, M.Y.: Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis, 7(5), 670 -677 (2016)

    53. J. Chmelar, Kotál, J., Kopecký, J., Pedra, J.H.F., Kotsyfakis, M.: All For One and One For All on the Tick–Host Battlefield. Trends Parasitol, 32(5), 368-377 (2016)

    54. M. Kotsyfakis, A. Schwarz, J. Erhart and J. M. Ribeiro: Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci Rep, 5, 9103 (2015)

    55. I. M. Francischetti, A. Sa-Nunes, B. J. Mans, I. M. Santos and J. M. Ribeiro: The role of saliva in tick feeding. Front Biosci, 14, 2051-88 (2009)

    56. M. Rodriguez-Valle, A. E. Lew-Tabor, C. Gondro, P. Moolhuijzen, M. Vance, F. D. Guerrero, M. Bellgard and W. Jorgensen: Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and Bos taurus cattle. BMC Genomics, 11, 47 (2010)

    57. M. Rodriguez-Valle, P. Moolhuijzen, E. K. Piper, O. Weiss, M. Vance, M. Bellgard and A. Lew-Tabor: Rhipicephalus microplus lipocalins (LRMs): genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasit, 43(9), 739-52 (2013)

    58. J. Potempa, E. Korzus and J. and Travis: The Serpins Superfamily of Proteinase Inhibitors: Structure, Funtion, and Regulation. J Biol Chem, 269(23), 15957-60 (1994)

    59. D. R. Flower: The lipocalin protein family: structure and function. Biochem J 318, 1-14 (1996)

    60. D. R. Flower, A. C. North and C. E. Sansom: The lipocalin protein family: structural and sequence overview. Bioch Bioph Acta, 1482(1-2), 9-24 (2000)

    61. G. C. Paesen, P. L. Adams, K. Harlos, P. A. Nuttall and D. I. and Stuart: Tick Histamine-Binding Proteins: Isolation, Cloning, and Three-Dimensional Structure. Mol Cell, 3, 661-671 (1999)

    62. M. Jutel, T. Watanabe, S. Klunker, M. Akdis, O. A. Thomet, J. Malolepszy, T. Zak-Nejmark, R. Koga, T. Kobayashi, K. Blaser and C. A. Akdis: Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature, 413, 420-425 (2001)

    63. J. Beaufays, B. Adam, Y. Decrem, P. P. Prevot, S. Santini, R. Brasseur, M. Brossard, L. Lins, L. Vanhamme and E. Godfroid: Ixodes ricinus tick lipocalins: identification, cloning, phylogenetic analysis and biochemical characterization. PLoS ONE, 3(12), e3941 (2008)

    64. J. Beaufays, B. Adam, C. Menten-Dedoyart, L. Fievez, A. Grosjean, Y. Decrem, P.-P. Prevot, S. Santini, R. Brasseur, M. Brossard, M. Vanhaeverbeek, F. Bureau, E. Heinen, L. Lins, L. Vanhamme and E. Godfroid: Ir-LBP, an Ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS ONE, 3(12), e3987 (2008)

    65. J. B. Mans, C. M. J. Ribeiro and F. J. Andersen: Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. J Biol Chem, 283(27), 18721-18733 (2008)

    66. B. J. Mans and J. M. Ribeiro: Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem Mol Biol, 38, 841-852 (2008)

    67. B. J. Mans and J. M. Ribeiro: A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem Mol Biol, 38, 862-870 (2008)

    68. A. Rachinsky, F. D. Guerrero and G. A. Scoles: Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol, 37(12), 1291-308 (2007)

    69. A. Rachinsky, F. D. Guerrero and G. A. Scoles: Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasit, 152(3-4), 294-313 (2008)

    70. R. G. Bastos, M. W. Ueti, F. D. Guerrero, D. P. Knowles and G. A. Scoles: Silencing of a putative immunophilin gene in the cattle tick Rhipicephalus (Boophilus) microplus increases the infection rate of Babesia bovis in larval progeny. Parasit Vectors, 2(1), 57 (2009)

    71. J. de la Fuente, Waterhouse, M.R., Sonenshine, E.D., Roe, M. R., Ribeiro, M.J., Sattelle, B. D., Hill, A. C.: Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. Front Cell Infect Microbiol, 6(103) (2016)

    72. M. I. Bellgard, P. M. Moolhuijzen, F. D. Guerrero, D. Schibeci, M. Rodriguez-Valle, D. G. Peterson, S. E. Dowd, R. Barrero, A. Hunter, R. J. Miller and A. E. Lew-Tabor: CattleTickBase: an integrated Internet-based bioinformatics resource for Rhipicephalus (Boophilus) microplus. Int J Parasit, 42(2), 161-169 (2012)

    73. F. D. Guerrero, R. J. Miller and A. A. Perez de Leon: Cattle tick vaccines: many candidate antigens, but will a commercially viable product emerge? Int J Parasit, 42(5), 421-7 (2012)

    74. F. D. Guerrero, P. Moolhuijzen, D. G. Peterson, S. Bidwell, E. Caler, M. Bellgard, V. M. Nene and A. Djikeng: Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics, 11, 374 (2010)

    75. J. K. McCooke, F. D. Guerrero, R. A. Barrero, M. Black, A. Hunter, C. Bell, F. Schilkey, R. J. Miller and M. I. Bellgard: The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads. Gene, 571(1), 135-41 (2015)

    76. P. M. Moolhuijzen, A. E. Lew-Tabor, J. A. Morgan, M. R. Valle, D. G. Peterson, S. E. Dowd, F. D. Guerrero, M. I. Bellgard and R. Appels: The complexity of Rhipicephalus (Boophilus) microplus genome characterised through detailed analysis of two BAC clones. BMC Res Notes, 4, 254 (2011)

    77. P. Hieter and M. Boguski: Functional genomics: it's all how you read it. Science, 278(5338), 601-2 (1997)

    78. E. L. Jockusch: Small RNAs: Their Diversity, Roles and Practical Uses. Academic Press, (2012)

    79. J. de la Fuente, K. M. Kocan, C. Almazan and E. F. Blouin: RNA interference for the study and genetic manipulation of ticks. Trends Parasitol, 23(9), 427-433 (2007)

    80. A. E. Lew-Tabor, A. G. Bruyeres, B. Zhang and M. Rodriguez Valle: Rhipicephalus (Boophilus) microplus tick in vitro feeding methods for functional (dsRNA) and vaccine candidate (antibody) screening. Ticks Tick Borne Dis, 5(5), 500-10 (2014)

    81. S. Antunes, O. Merino, J. Mosqueda, J. A. Moreno-Cid, L. Bell-Sakyi, R. Fragkoudis, S. Weisheit, J. M. Perez de la Lastra, P. Alberdi, A. Domingos and J. de la Fuente: Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasit Vectors, 7, 42 (2014)

    82. S. Antunes, O. Merino, J. Lerias, N. Domingues, J. Mosqueda, J. de la Fuente and A. Domingos: Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition. Ticks Tick Borne Dis, 6(1), 47-55 (2015)

    83. A. V. Gonsioroski, I. A. Bezerra, K. U. Utiumi, D. Driemeier, S. E. Farias, I. da Silva Vaz, Jr. and A. Masuda: Anti-tick monoclonal antibody applied by artificial capillary feeding in Rhipicephalus (Boophilus) microplus females. Exp Parasitol, 130(4), 359-63 (2012)

    84. A. E. Lew-Tabor, S. Kurscheid, R. Barrero, C. Gondro, P. M. Moolhuijzen, M. Rodriguez Valle, J. A. T. Morgan, C. Covacin and M. I. Bellgard: Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus. Int J Parasit, 41(9), 1001-14 (2011)

    85. B. Battur, D. Boldbaatar, R. Umemiya-Shirafuji, M. Liao, B. Battsetseg, D. Taylor, B. Baymbaa and K. Fujisaki: LKR/SDH plays important roles throughout the tick life cycle including a long starvation period. PLoS ONE, 4(9), e7136 (2009)

    86. D. Boldbaatar, B. Battsetseg, T. Matsuo, T. Hatta, R. Umemiya-Shirafuji, X. Xuan and K. Fujisaki: Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem Cell Biol, 86(4), 331-44 (2008)

    87. N. Ruiz, L. A. de Abreu, L. F. Parizi, T. K. Kim, A. Mulenga, G. R. Braz, S. Vaz Ida, Jr. and C. Logullo: Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS ONE, 10(6), e0130008 (2015)

    88. A. Mulenga and R. Khumthong: Disrupting the Amblyomma americanum (L.) CD147 receptor homolog prevents ticks from feeding to repletion and blocks spontaneous detachment of ticks from their host. Insect Bioch Mol Biol, 40(7), 524-32 (2010)

    89. J. de la Fuente, R. Manzano-Roman, V. Naranjo, K. M. Kocan, Z. Zivkovic, E. F. Blouin, M. Canales, C. Almazan, R. C. Galindo, D. L. Step and M. Villar: Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. Vaccine, 28(7), 1786-95 (2010)

    90. J. de la Fuente, E. F. Blouin, R. Manzano-Roman, V. Naranjo, C. Almazan, J. M. Perez de la Lastra, Z. Zivkovic, R. F. Massung, F. Jongejan and K. M. Kocan: Differential expression of the tick protective antigen subolesin in Anaplasma marginale- and A. phagocytophilum-infected host cells. Ann N Y Acad Sci, 1149, 27-35 (2008)

    91. J. de la Fuente, K. M. Kocan, E. F. Blouin, Z. Zivkovic, V. Naranjo, C. Almazan, E. Esteves, F. Jongejan, S. Daffre and A. J. Mangold: Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. Vet Parasitol, 167(2-4), 175-86 (2010)

    92. R. F. Mercado-Curiel, G. H. Palmer, F. D. Guerrero and K. A. Brayton: Temporal characterisation of the organ-specific Rhipicephalus microplus transcriptional response to Anaplasma marginale infection. Int J Parasitol, 41(8), 851-60 (2011)

    93. R. K. Nabours: Evidence of Alternative Inheritance in the F2 Generation from Crosses of Bos indicus on Bos taurus. The American Naturalist, 46(547), 428 - 436 (1912)

    94. W. Trager: Acquired Immunity to Ticks. J Parasitol, 25(1), 57-81 (1939)

    95. P. W. Askenase, Bagnall, B.G., Worms, M.J.: Cutaneous basophil-associated resistance to ectoparasites (ticks). I. Transfer with immune serum or immune cells. Immunology, 45(3), 501-511 (1982)

    96. A. R. Trimnell, R. S. Hails and P. A. Nuttall: Dual action ectoparasite vaccine targeting 'exposed' and 'concealed' antigens. Vaccine, 20(29-30), 3560-8 (2002)

    97. P. A. Nuttall, A. R. Trimnell, M. Kazimirova and M. Labuda: Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol, 28(4), 155-63 (2006)

    98. M. Rodriguez Valle, T. Xu, S. Kurscheid and A. E. Lew-Tabor: Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasit Vectors, 8(1), 7 (2015)

    99. M. Popara, M. Villar, L. Mateos-Hernandez, I. G. de Mera, A. Marina, M. del Valle, C. Almazan, A. Domingos and J. de la Fuente: Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine, 31(42), 4728-35 (2013)

    100. A. Rodriguez-Mallon, P. E. Encinosa, L. Mendez-Perez, Y. Bello, R. Rodriguez Fernandez, H. Garay, A. Cabrales, L. Mendez, C. Borroto and M. P. Estrada: High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis, 6(4), 530-7 (2015)

    101. F. D. Guerrero, R. Andreotti, K. G. Bendele, R. C. Cunha, R. J. Miller, K. Yeater and A. A. Perez de Leon: Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations. Parasit Vectors, 7, 475 (2014)

    102. M. Canales, C. Almazan, V. Naranjo, F. Jongejan and J. de la Fuente: Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol, 9, 8 (2009)

    103. L. Kamau, A. R. Skilton, O. D. Odongo, S. Mwaura, N. Githaka, E. Kanduma, M. Obura, E. Kabiru, A. Orago, A. Musoke and P. R. and Bishop: Differential transcription of two highly divergent gut-expressed Bm86 antigen gene homologues in the tick Rhipicephalus appendiculatus (Acari: Ixodida). Insect Mol Biol, 20(1), 105-114 (2011)

    104. D. Odongo, L. Kamau, R. Skilton, S. Mwaura, C. Nitsch, A. Musoke, E. Taracha, C. Daubenberger and R. Bishop: Vaccination of cattle with TickGARD induces cross-reactive antibodies binding to conserved linear peptides of Bm86 homologues in Boophilus decoloratus. Vaccine, 25(7), 1287-1296 (2007)

    105. S. Imamura, B. Namangala, T. Tajima, M. E. Tembob, J. Yasuda, K. Ohashi and M. Onuma: Two serine protease inhibitors (serpins) that induce a bovine protective immune response against Rhipicephalus appendiculatus ticks. Vaccine, 24, 2230-2237 (2006)

    106. O. Hajdusek, C. Almazán, G. Loosova, M. Villar, M. Canales, L. Grubhoffer, P. Kopacek and J. de la Fuente: Characterization of ferritin 2 for the control of tick infestations. Vaccine, 28(17), 2993-98 (2010)

    107. M. Labuda, A. R. Trimnell, M. Lickova, M. Kazimirova, G. M. Davies, O. Lissina, R. S. Hails and P. A. Nuttall: An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog, 2(4), e27 (2006)

    108. A. R. Trimnell, G. M. Davies, O. Lissina, R. S. Hails and P. A. Nuttall: A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine, 23(34), 4329-41 (2005)

    109. R. Andreotti, R. C. Cunha, M. A. Soares, F. D. Guerrero, F. P. Leite and A. A. de Leon: Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus. Vaccine, 30(47), 6678-85 (2012)

    110. A. E. El Hakim, Y. E. Shahein, S. Abdel-Shafy, A. M. Abouelella and R. R. Hamed: Evaluation of glycoproteins purified from adult and larval camel ticks (Hyalomma dromedarii) as a candidate vaccine. J Vet Sci, 12(3), 243-9 (2011)

    111. A. Torina, J. A. Moreno-Cid, V. Blanda, I. G. Fernandez de Mera, J. M. de la Lastra, S. Scimeca, M. Blanda, M. E. Scariano, S. Brigano, R. Disclafani, A. Piazza, J. Vicente, C. Gortazar, S. Caracappa, R. C. Lelli and J. de la Fuente: Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasit Vectors, 7, 10 (2014)

    112. C. Almazan, O. Moreno-Cantu, J. A. Moreno-Cid, R. C. Galindo, M. Canales, M. Villar and J. de la Fuente: Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine, 30(2), 265-72 (2012)

    113. M. Shakya, B. Kumar, G. Nagar, J. de la Fuente and S. Ghosh: Subolesin: a candidate vaccine antigen for the control of cattle tick infestations in Indian situation. Vaccine, 32(28), 3488-94 (2014)

    114. J. de la Fuente, J. A. Moreno-Cid, R. C. Galindo, C. Almazan, K. M. Kocan, O. Merino, J. M. Perez de la Lastra, A. Estrada-Pena and E. F. Blouin: Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens. Transbound Emerg Dis, 60 Suppl 2, 172-8 (2013)

    115. L. F. Parizi, J. Reck, Jr., D. P. Oldiges, M. G. Guizzo, A. Seixas, C. Logullo, P. L. de Oliveira, C. Termignoni, J. R. Martins and S. Vaz Ida, Jr.: Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: a field evaluation. Vaccine, 30(48), 6912-7 (2012)

    116. M. Hope, X. Jiang, J. Gough, L. Cadogan, P. Josh, N. Jonsson and P. Willadsen: Experimental vaccination of sheep and cattle against tick infestation using recombinant 5'-nucleotidase. Parasite Immunol, 32(2), 135-42 (2010)

    117. C. Lambertz, N. Chongkasikit, S. Jittapalapong and M. Gauly: Immune Response of Bos indicus Cattle against the Anti-Tick Antigen Bm91 Derived from Local Rhipicephalus (Boophilus) microplus Ticks and Its Effect on Tick Reproduction under Natural Infestation. J Parasitol Res, 2012, 907607 (2012)

    118. R. V. McKenna, G. A. Riding, J. M. Jarmey, R. D. Pearson and P. Willadsen: Vaccination of cattle against the Boophilus microplus using a mucin-like membrane glycoprotein. Parasite Immunol, 20(7), 325-36 (1998)

Share and Cite
Manuel Rodriguez Valle, Felix D. Guerrero. Anti-tick vaccines in the omics era. Frontiers in Bioscience-Elite. 2018. 10(1); 122-136.